
Journal of Mathematical Chemistry 11(1992)133-144 133

C O M B I N A T O R I A L AND N O N C O M M U T A T I V E L I S T - P R O C E S S I N G
AND A S S O C I A T E D G R A P H S

M. DJURASOVIC and Z. STIPCEVIC
lnstitut za Fiziku, Prirodno-matematidki Fakultet, Vojvode Putnika 43, 71000 Sarajevo,
Yugoslavia

Abst rac t

Recently the authors have proposed a list-processing approach to the modeling of
algebraic quantum field theory methods in quantum mechanics in which the noncommutative
algebra of quantum-mechanical operators is emulated by lists. The processing produces
reordered sequences of elements of a ring with a unit cormnutator and generates dynamic
structures which, for some initial arrangements, correspond to partially ordered graphs
characterized by recurrence relations and combinatorial identities. Likewise, in another
list-processing application to physical problems, a simulation of Feynman diagrams
hinged on predominantly combinatorial aspects and demanded explicit generation of
certain combinatorial objects. This motivated an investigation into the combinatorial
nature of noncommutative list-processing and of recursive algorithms for explicit
construction of combinatorial lists, which we now present. The emphasis is also placed
on the consideration of associated graphs and the graph-theoretic origin of the appearance
of recurrence relations in the reordering theorems of the noncommutative algebra.

1. In t roduc t ion

The present contr ibution examines algorithmic essentials and poss ib le
programming realizations of the recently proposed list-processing approach to the
modeling of algebraic quantum field theory methods in quantum mechanics [1] and
reports on the ongoing investigation into the corresponding graph-theoretic and
combinatorial aspects [2].

The aim of the current phase of research is the completion of a software unit
capable of manipulating, within the noncommutative ring, reasonably complex algebraic
structures which would undergo appropriate rearrangement procedures and thereby
manifest combinatorial and algebraic regularity expressible in terms of graphs,
recurrence relations, etc. The unit should be sufficiently fast, flexible and manageable
to allow for easy emulation of the ring state transformations and the appropriate
tracing of the graph origin of query results.

In view of foreseeable quantum-mechanical applications - in chemistry and
in many-body quantum physics - we are particularly interested in normally ordered
binomial expansions of the two ring generators (on account of the algebraic structure

© J.C. Baltzer AG, Scientific Publishing Company

134 M. Djurasovid, Z. Stip~evid, List-processing and associated graphs

of most Hamiltonians [3]), and in the processing of combinatorial structures within
the ring (because of the physical requests for various partial symmetries imposed
on the states created from vacuum).

Related to the dependence of the speed and efficiency of processing on
whether one develops the appropriate procedures relying from the outset on the
basic unit commutator or makes use of the commutator between different powers
of the ring generators [4], we also present some algebraic properties of the corresponding
expansion coefficients.

The full reproduction of the processing unit is beyond the scope of this
report. Instead, we rather extensively discuss the basic algorithmic features of
noncommutative list-processing and elaborate on the involved recursive aspects of
logic-programming, restricting the presentation to only basic explicit procedures.
The algorithms are readily implemented as a PROLOC query-base, but can also be
translated into appropriate PASCAL procedures in a rather straightforward manner,
which then may easily be converted from recursive into iterative actions to avoid
excessive recursion nesting (and related stack limitations) and increase the processing
speed.

. Review of algebraic properties

Let R denote an associative ring with unit 1 of characteristic zero. For any
two ring elements A and B which obey the commutation relation

[A, B] = 1

and are referred to as generators, the sequence

1, BA, B2A 2, BaA 3, B4A 4 BnA n

(1)

(2)

is linearly independent over the ring of integers.
The immediate implications of the commutation relation (1) are

[A n, B] = na n-1 (3)

and, likewise

[A, B n] = n B n- 1 (4)

or some more involved relations, e.g.

n-l (n) (B A) q a . (5) [A,(BA) n]= ~ q
q=0

In some cases with symmetric initial arrangements, the associated reordering
prescriptions take the form of transformation expansions with integer-valued coefficients,
subject to certain recurrence relations. The most useful are the following [5]:

M. Djurasovid, Z. Stip~evid, List-processing and associated graphs 135

n

(AB)n = E C(n'q)(BA)q
q=O

with the recurrence relation

(6)

then

with

and

with

C(n, q) = C (n - 1, q - 1) + C (n - 1, q),

n

AnB n = ~ L(n ,q)BqA q

q=O

L(n, q) = L(n - 1, q - 1) + (n + q)L(n - 1, q),

BnA n = ~aS(n ,q) (BA)q

q=0

S(n, q) = S(n - 1, q - 1) - (n - 1)S(n - 1, q).

(7)

(8)

(9)

(10)

(11)

The normal-product expansion of the nth power of B + A has the form

(B + a) n = E E H (n , q) BqA p-q
p=0 q=0

(12)

with coefficients H(n, q), defined for n, any positive integer or zero, and for
q = 0, 1, 2, 3 n, so as to satisfy the recurrence relation

H(n, q) = H (n - 1, q - 1) + (q + 1) H (n - 1, q + 1) (13)

and the stopping rule H(0, 0) = 1.
Finally, the general powers' commutator has the normal-order expansion

(q)(l q~l n Bn-q A m-q . [A'n,B n] = q! q (14)

3. Algorithmic and programming aspects

In ref. [1], we have formulated an algorithmic prescription for the list-processing
transition to normal ordering. We also included an elementary micro-PROL06 query
base and presented a few elementary examples and their graph-theoretic representation.
We now examine related topics more extensively, paying special attention to some
programming details.

The basic data structure which undergoes processing within the model should
be capable of representing an arbitrary linear combination with integral coefficients

1 3 6 M. Djurasovid, Z. Stipgevid, List-processing and associated graphs

of sequences, of arbitrary length and in arbitrary arrangements, of the ring generators
A and B. The natural choice for a data structure with needed properties is a compound
list whose records contain an integer field for coefficients and a field supporting
a linked list of A and B symbols, hereafter referred to as a component list. The
processing corresponds to a transition into another appropriate combination of the
same type, with the aim of achieving, in keeping with the requirements imposed by
the basic commutator (1), a desired arrangement of generators (i.e. normal ordering).
The intended algebraic manipulations with creation and annihilation operators are
then emulated via state transitions within a vector space of compound lists between
an initial state and a final normally ordered state. (The terms initial and final should
not connotate temporal associations between these states, but rather refer to required
rearrangements within the ring elements.)

Graph-related features of the noncommutative algebra list-processing and the
abundant appearance of recurrence relations both originate in the recursive features
of data structures and in the recursive nature of processing algorithms. In keeping
with this observation and to further promote logic programming where "recursive
thinking" plays a key role in the process of inference making, we have carried out
algorithmic considerations relying almost exclusively on recursion. These we now
briefly present.

Taking a component list as input, one has to look for the first occurrence of
an ordered pair (A, B) of neighboring elements and replace the original list with two
lists, one with the pair in reverse order and the other with the pair omitted, and then
repeat the action until there is no (A, B) pair in the resulting compound list.

To satisfy swapping within the pair (.4, B), one may employ a predicate
"swap" recursively described as

swap([a,blY], [b, a lY]) :- !.

swap([X [Y], [Xl Z]) :- swap(Y, Z) . (15)

and, similarly, deleting a pair (A, B) is tested by a recursive predicate "delab",

delab([a,b]X],X) :- [.

delab([XIY], [XlZ]) :- delab(Y, Z) . (16)

Since swapping and deleting appear concurrently, it is convenient to have a
single predicate "abba" for testing both

abba([a,b]X], [b, alX],X):- !.

abba([X[Y], [XlYI], [X[Y2]):- abba(Y, YI,Y2). (17)

Considering a predicate "normorder" as being satisfied when an initial compound
list is converted into a final compound list with no (A, B) pairs, in order to collect
the component lists one needs the usual concatenation recursive predicate "union"

M. Djurasovid, Z. Stip6evid, List-processing and associated graphs 137

union([] ,X,X) .

union([XiXl] ,Y, [X I Z]) :- union (XI,Y, Z) . (18)

and then may write

normorder ([X[Y] , Z) : -

abba (X, Xl, X2) ,
I -t

normorder ([Xl], YI),

normorder ([X2] ,Y2),

union (YI, Y2, XN),

normorder (Y, YN),

union (XN, YN, Z) .

normorder (X, X) . (19)

Note the use of the cut predicate, which prevents backtracking each time the
"abba" predicate is satisfied and thus eliminates the need for the stopping rule in
the second clause of the normorder predicate. Otherwise one would have to introduce
a predicate "noab" which testifies to the total absence of (A, B) pairs

noab([]) .

noab([a,bl_]) :- !, fail.

noab([_IX]) :- noab(X), (20)

and also to modify the second "normorder" close to

normorder (X, X) : - noah (X) . (21)

The predicate "normorder" describes the relationship between an arbitrary
initial compound list and its corresponding final, normally ordered compound list.
Note that the resulting compound list generally contains many identical component
lists which now should be grouped together, determining appropriate coefficients,
which is done by application of the usual collecting procedures.

In order to trace the intermediate processing results and introduce appropriate
collection of identical elements at each subsequent level it is useful, especially
when dealing with the initial configurations which display some degree of symmetry,
to express the basic algorithm so that it generates a binary tree, e.g.

normordertree (X,t (L,X,R)) "-

swap (X, Xl),

normordertree (Xl, L),

delab (X, X2),

normordertree (X2, R),
!.

normordertree (X, t (nil, X, nil)) . (22)

138 M. Djurasovi~, Z. Stip(evi~, List-processing and associated graphs

The described predicates provide a direct programming implementation as a
PROLOC query base. If, for reasons stated previously, one prefers to deal with an
imperative language - like PASCAL -- capable of an easy modification of recursive
procedures into iterative procedures, one has to appropriately reexpress (19) as a
PAscAL function.

When component lists and compound lists are implemented as PASCAL dynamic
structures, their type may be defined as

and

list = ^link;
link = record

linfo : char;
lref : list

end; (23)

llist = ^llink;
llink = 6 record

n u m : integer;
llinfo : list;
lref : llist

end; (24)

respectively. Predicate (19) is then replaced by the following Pascal recursive function:

function normorder (LI : llist) : llist;

begin

if noab(Ll) then normorder : = L1

else

if abtest (first (LI)) then

normorder := normorder (fput (swap (first (LI)),

fput (delab (first (LI)) ,bf (LI)))

else

normorder : = fput (first (LI), normorder (bf (LI)))

end; (25)

When the binary tree emulation is used, the appropriate PASCAL type may be defined
a s

tree = Anode;
node = record

tinfo : list;
left, right : tree

end; (26)

and (22) may be replaced by a list-into-binary-tree PASCAL procedure:

M. Djurasovid, Z. Stip~evid, List-processing and associated graphs 139

procedure normordertree (L:list; var T : tree) ;

begin

new (T) ;

T ̂ . list := L;

if noab (L) then

begin

T^.left := nil;

T ̂ .right : = nil

end

else

begin

normordertree (swap (L), T ̂ . left) ;

normordertree (delab (L), T ̂ .right)

end

end; (27)

The leaves of the resulting tree can then be interpreted as the processing output.
Note that it is assumed that the usual list processing functions "first", "bf", "fput",
etc., have been previously defined.

The purpose of the developed software is twofold: on the one side it should
enable fast and reliable processing of long and complex initial lists, and on the other
it should facilitate algebraic and graph-theoretic analysis.

4. Binary trees, networks and combinatorial aspects

When list rearrangements are carried out by repetitive reference to the unit
commutator - until the normal order is achieved - the intermediate steps comprise
a corresponding binary tree in which the initial list is placed at the root. Each
successive left branch produces swapping within the first encountered pair (A, B),
while each successive right branch produces appropriate deletion of the pair. The
intermediate results are placed in the appropriate nodes on different levels of the
tree. The final configuration - the resulting normally ordered list - coincides with
the leaves of the tree. In ref. [1], we have presented a few examples which illustrate
the rearrangements and display some graph-related aspects of the rearrangement
process.

In some cases, judicious collection procedures, sometimes involving different
intermediate levels, may transform the tree into networks and manifest various
numeric recurrence relations among the appropriate expansion coefficients. In this
way, for instance, one can rederive expressions (7)-(11). The associated graphs
stem from the presence of equivalent nodes in the binary tree, which prompts for
subsequent contractions and yields a corresponding transformation of the binary
tree into a more general graph. This is often brought about by some partial ordering,
implicit in the list-processing, which implies the existence of recurrence relations

140 M. Djurasovid, Z. Stipdevid, List-processing and associated graphs

interpreted as rules connecting respective nodes. In general, the appearance of
recurrence relations can be traced back to the recursive features of data structures
and to the recursive nature of processing algorithms.

Algebraic considerations within the noncommutative ring which led to various
recurrence relations, e.g. (7), (9), (11), (13), etc., first presented in ref. [5], possess
graphical counterparts and, consequently, can be used to study the related graph-
theoretical aspects. Reversely, the related graphs may yield constructive assistance
in the detection of some yet unknown algebraic relations. With respect to the
algorithmic features of the noncommutative list processing, we observe that both
algebraic and graph-theoretic considerations may beneficially influence the development
of more efficient algorithms [4].

To be more specific, let us note that the normal ordering of an arbitrary ring
element AmtB nl Arn2B n2 Arn3B n3. . . may be viewed from three different elementary
levels: (a) jumping of B over A, (b) jumping of B over A ' , and (c) jumping of B n
over Am. Algebraically, these correspond to commutators (1), (3) and (14), respectively.
Tracing the corresponding intermediate results then leads to binary trees, elementary
networks and more complex graphical structures.

As an illustration, consider the binary tree of intermediate transitions for an
initial list AraB n. Inspecting the repetitive features of this binary tree, one easily
observes that leftmost nodes represent progressive motion of B generators from
right to left, and that while each B travels from left to right, jumping over each
successive A, the neighboring right nodes all contain the same content, namely, the
list from which the (A, B) pair under consideration had been removed. Deletion of
an (A, B) pair does not change the type of the list structure, it only decrements by
one the powers of A and B, and consequently we are faced with a recursive situation
which amounts to saying that the processing tree shrinks into a network with
multiplicative side weights which, along the slash diagonals, progressing from left
to right, amount to m, m - 1, m - 2 respectively [1].

If the position of the network nodes is represented by two coordinates:
n = 0, 1, 2, 3 for rows, and q = 0, 1, 2, 3 for slash diagonals, and the
numeric content of the nodes is expressed as a function M(m, n, q), the network
implies the recurrence relation

M (m , n , q) = (m - q + 1) M (m , n - l , q - 1) + M (m , n - l , q) (28)

with the stopping rule

M(m, n, q) = 0, for q < 0 and q > min(m, n); M(n, 0, 0) = 1. (29)

The values of M(m, n, q) serve as expansion coefficients in the A"B '~ normal-
ordering, i.e.

min(m,n)
A m B n = Z M (m ' n ' q) B n - q A m - q " (30)

q=O

M. Djurasovid, Z. Stipgevi6, List-processing and associated graphs 141

Recurrence relation (28) reflects the network multiplicative weight
structure in which each node (n, q) receives information from two preceding nodes,
(n - 1, q - 1) and (n - 1, q), with factors (m - q + 1) and 1, respectively.

The AraB n normal-ordering network exhibits the property that all trajectories
which lead from the root to any given node (n, q) carry equal contributions amounting
to the product of branch factors, namely, m(m - 1)(m - 2) . . . (m - q + 1). Note that
any trajectory, in order to connect the root with the (n, q) node, has to descend a
total of n steps, taking left or right branches at will, except for the overall condition
that q right-branch selections have to be taken. This is equivalent to saying that the
number of trajectories equals the number of combinations C(n, q). These properties
allow explicit determination of the coefficients M(m, n, q); namely, noting that the
value of M(m, n, q) equals the total contribution from all trajectories passing through
the (n, q) node, we have

M (m , n, q) = m (m - 1)(m - 2) . . . (m - q + 1)C(n, q) (31)

or, equivalently

M (m , n , q) = q ! (q l (q) . (32)

Solution (31) can be verified by insertion into recurrence relation (28) and
subsequent application of elementary combinatorial identities:

(ql 1 - q q - 1 ; q = q - 1 + q " (3 3)

The algebraic origin of recurrence relation (28) can be established in the
usual way by the method of total induction. To that end, one has to start with
equality

Arab n = (Arab n- 1)B, (34)

make use of (30), apply commutation relation (3), and equate coefficients with
equal powers on both sides.

Starting with the equality

Arab n = A(A m- l B n - 1) B ' (35)

however, one arrives at a different recurrence relation which connects each node
with the three preceding nodes:

M (n , m , q) = M (n - 1, m - 1, q) + (n + m - 2q + 1) M (n - 1, m - 1, q - 1)

+ (n - q + 1)(m - q + 1) M (n - 1, m - 1, q - 2). (36)

142 M. Djurasovid, Z. Stip6evid, List-processing and associated graphs

Alternatively, writing AraB" as (A r a B) B " - 1 and using (3) yields

AraB" = Am - 1B" - l(n + BA), (37)

where subsequent insertion of (30), into both sides of (37), leads to a new recurrence
relation

M (m , n , q) = (m + n - q) M (m - 1, n - 1, q - 1) + M(rn - 1, n - 1, q) , (38)

which, unlike (28), keeps neither m nor n fixed. We observe that for the special case
m = n, and the notation L(n , q) = M (n , n, n + q), relation (38) turns into the recurrence
relation (9) for Laguerre coefficients.

Expansion (30) provides the basis for a more efficient version of the
normal-order list-processing. Instead of looking for the first occurrence of a
pair (A , B) in a general e lement , say, A A A B B A B A B B A A B A B B A , i.e.
A A (A B) B A B A B B A A B A B B A , it focuses on the beginning sequence A A A B B , views the
e lements as (A A A B B) A B A B B A A B A B B A , uses (30), and recursively repeats
transformations of compound lists until the normal order is reached.

As stated previously, the normally ordered expansion of arbitrary power of
A + B is, from a quantum-mechanical point of view, potentially most interesting [3].
In order to prepare the compound list, which corresponds to the unordered expansion
of (A + B)", to serve as the initial state for the PASCAL function "normorder" (25),
we have added the following "apbton" function which recursively produces the
initial binomial expansion:

function apbton(n :integer) :llist;

begin

if n = 0 then apbton := fput (I, nil, nil)

else

apbton : = union(attach('A', apbton (n - I)),

attach ('B', apbton (n - i)))

end; (39)

The auxiliary recursive function "attach" is self-explanatory:

function attach (a : char;Ll : llist) : llist;

begin

if L1 = nil then attach := nil

else

attach := fput (a, attach (a, bf (LI))

end; (40)

As printouts for small values of n indicate, the normally ordered binomial
expansion can be expressed in terms of linear combinations of normal products of
lower powers of A + B, which corroborates the general structure of (14). It also
indicates the validity of the equality

M. Djurasovi~, Z. Stip(evi~, List-processing and associated graphs 143

[A + B]n(A + B) = [A + B]" + I + p[A + B]"- I, (41)

in which [A + B] n designates the normal product, and (A + B)" the normally ordered
product, and can be easily proved by binomial expansion and elementary combinatorial
identities. In its turn (41), by the usual method of total induction, applied to (12),
leads to recurrence relation (13) and the corresponding network which yields the
explicit expression

H(n, n - 2q) = [n n 2 q) (2q -1)!! (42)

and the value zero for H(n, n - 2q + 1).
To produce a combinatorially symmetric initial state S(n, q), i.e. the linear

combination of C(n, q) ring elements such that each contains q generators of the
type B, combinatorially distributed among generators of the type A, we need to
introduce a PASCAL function "combab" [6]:

function combab (m, n : integer) : llist;

begin

if (m<0) or (n<0) or (n<m) then combab := nil

else

if (m = 0) and (n = 0) then combab := fput (l,nil, nil)

else

combab := union (attach ('A', combab (m, n - i)),

attach('B',combab(m - l,n - I)))

end; (43)

Experimenting with various states produced by (43), as inputs into the
"normorder" function (25), we obtain printouts with expressions indicating the
following normally ordered expansion:

Bq-kAn-q-k.
S(n,q) = 2 k k ! (q - k)!(n + k - q)!

k=0

(44)

To summarize, we reiterate that the noncommutative algebra software enables
fast and reliable processing of long and complex lists, facilitates algebraic and
graph-theoretic analysis of different algebraic situations and possibly aids in the
detection of some yet unknown relations.

Acknowledgement

One of the authors (Z.S.) would like to acknowledge the interest and
encouragement of Professor Gordon E. Baird.

144 M. Djurasovi~, Z. Stip~evi~, List-processing and associated graphs

R e f e r e n c e s

[1] M. Djurasovi6, S. GrubaL-i6 and Z. Stip6evi6, J. Math. Chem. 8(1991)137.
[2] M. Djurasovi6 and Z. Stip~evi6, A list-processing simulation of no-self-loop Feynman diagrams, in:

Proc. 13th Information Technologies Conf., Jahorina, 1989.
[3] M.M. Ninan and Z. Stip~evi6, Amer. J. Phys. 37(1969)734.
[4] M. Djurasovi6 and Z. Stip~evi6, A short-cut approach to QM list-processing, in: Proc. 15th Information

Technologies Conf., Jahorina, 1991.
[5] M.M. Ninan and Z. Stip6evi6, G1. mat. 4 24(1969)9.
[6] M. Djurasovi6 and Z. Stip~evi6, Combinatorics via recursive list processing, in: Proc. 14th Information

Technologies Conf., Jahorina, 1990).

