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Abst rac t  

Recently the authors have proposed a list-processing approach to the modeling of 
algebraic quantum field theory methods in quantum mechanics in which the noncommutative 
algebra of quantum-mechanical operators is emulated by lists. The processing produces 
reordered sequences of elements of a ring with a unit cormnutator and generates dynamic 
structures which, for some initial arrangements, correspond to partially ordered graphs 
characterized by recurrence relations and combinatorial identities. Likewise, in another 
list-processing application to physical problems, a simulation of Feynman diagrams 
hinged on predominantly combinatorial aspects and demanded explicit generation of 
certain combinatorial objects. This motivated an investigation into the combinatorial 
nature of noncommutative list-processing and of recursive algorithms for explicit 
construction of combinatorial lists, which we now present. The emphasis is also placed 
on the consideration of associated graphs and the graph-theoretic origin of the appearance 
of recurrence relations in the reordering theorems of the noncommutative algebra. 

1. In t roduc t ion  

The present  contr ibution examines algorithmic essentials and poss ib le  
programming realizations of  the recently proposed list-processing approach to the 
modeling of  algebraic quantum field theory methods in quantum mechanics [1] and 
reports on the ongoing investigation into the corresponding graph-theoretic and 
combinatorial aspects [2]. 

The aim of  the current phase of  research is the completion of  a software unit 
capable of  manipulating, within the noncommutative ring, reasonably complex algebraic 
structures which would undergo appropriate rearrangement procedures and thereby 
manifest combinatorial and algebraic regularity expressible in terms of  graphs, 
recurrence relations, etc. The unit should be sufficiently fast, flexible and manageable 
to allow for easy emulation of  the ring state transformations and the appropriate 
tracing of  the graph origin of  query results. 

In view of  foreseeable quantum-mechanical applications - in chemistry and 
in many-body quantum physics - we are particularly interested in normally ordered 
binomial expansions of  the two ring generators (on account of  the algebraic structure 
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of most Hamiltonians [3]), and in the processing of combinatorial structures within 
the ring (because of  the physical requests for various partial symmetries imposed 
on the states created from vacuum). 

Related to the dependence of the speed and efficiency of processing on 
whether one develops the appropriate procedures relying from the outset on the 
basic unit commutator or makes use of the commutator between different powers 
of the ring generators [4], we also present some algebraic properties of the corresponding 
expansion coefficients. 

The full reproduction of the processing unit is beyond the scope of  this 
report. Instead, we rather extensively discuss the basic algorithmic features of 
noncommutative list-processing and elaborate on the involved recursive aspects of 
logic-programming, restricting the presentation to only basic explicit procedures. 
The algorithms are readily implemented as a PROLOC query-base, but can also be 
translated into appropriate PASCAL procedures in a rather straightforward manner, 
which then may easily be converted from recursive into iterative actions to avoid 
excessive recursion nesting (and related stack limitations) and increase the processing 
speed. 

. Review of  algebraic properties 

Let R denote an associative ring with unit 1 of characteristic zero. For any 
two ring elements A and B which obey the commutation relation 

[A, B] = 1 

and are referred to as generators, the sequence 

1, BA, B2A 2, BaA 3, B4A 4 . . . . .  BnA n 

(1) 

(2) 

is linearly independent over the ring of integers. 
The immediate implications of the commutation relation (1) are 

[A n, B] = na  n-1 (3) 

and, likewise 

[A, B n] = n B  n- 1 (4) 

or some more involved relations, e.g. 

n-l ( n ) ( B A ) q a .  (5) [A,(BA) n]= ~ q 
q=0 

In some cases with symmetric initial arrangements, the associated reordering 
prescriptions take the form of transformation expansions with integer-valued coefficients, 
subject to certain recurrence relations. The most useful are the following [5]: 
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n 

(AB)n = E C(n'q)(BA)q 
q=O 

with the recurrence relation 

(6) 

then 

with 

and 

with 

C(n, q) = C ( n -  1, q -  1) + C ( n -  1, q), 

n 

AnB n = ~ L(n ,q)BqA q 

q=O 

L(n,  q) = L(n - 1, q - 1) + (n + q)L(n  - 1, q), 

BnA n = ~aS(n ,q ) (BA)q  

q=0 

S(n, q) = S(n - 1, q - 1) - (n - 1)S(n - 1, q). 

(7) 

(8) 

(9) 

(10) 

(11) 

The normal-product expansion of  the nth power of B + A has the form 

(B + a ) n =  E E H ( n , q )  BqA p-q 
p=0 q=0 

(12) 

with coefficients H(n,  q), defined for n, any positive integer or zero, and for 
q = 0, 1, 2, 3 . . . . .  n, so as to satisfy the recurrence relation 

H(n,  q) = H ( n -  1, q -  1) + (q + 1 ) H ( n -  1, q + 1) (13) 

and the stopping rule H(0, 0) = 1. 
Finally, the general powers' commutator has the normal-order expansion 

(q)(l q~l n Bn-q A m-q . [A'n,B n ] = q! q (14) 

3. Algorithmic and programming aspects 

In ref. [ 1 ], we have formulated an algorithmic prescription for the list-processing 
transition to normal ordering. We also included an elementary micro-PROL06 query 
base and presented a few elementary examples and their graph-theoretic representation. 
We now examine related topics more extensively, paying special attention to some 
programming details. 

The basic data structure which undergoes processing within the model  should 
be capable of  representing an arbitrary linear combination with integral coefficients 
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of sequences, of arbitrary length and in arbitrary arrangements, of the ring generators 
A and B. The natural choice for a data structure with needed properties is a compound 
list whose records contain an integer field for coefficients and a field supporting 
a linked list of A and B symbols, hereafter referred to as a component list. The 
processing corresponds to a transition into another appropriate combination of  the 
same type, with the aim of achieving, in keeping with the requirements imposed by 
the basic commutator (1), a desired arrangement of generators (i.e. normal ordering). 
The intended algebraic manipulations with creation and annihilation operators are 
then emulated via state transitions within a vector space of compound lists between 
an initial state and a final normally ordered state. (The terms initial and final should 
not connotate temporal associations between these states, but rather refer to required 
rearrangements within the ring elements.) 

Graph-related features of the noncommutative algebra list-processing and the 
abundant appearance of recurrence relations both originate in the recursive features 
of data structures and in the recursive nature of processing algorithms. In keeping 
with this observation and to further promote logic programming where "recursive 
thinking" plays a key role in the process of inference making, we have carried out 
algorithmic considerations relying almost exclusively on recursion. These we now 
briefly present. 

Taking a component list as input, one has to look for the first occurrence of 
an ordered pair (A, B) of neighboring elements and replace the original list with two 
lists, one with the pair in reverse order and the other with the pair omitted, and then 
repeat the action until there is no (A, B) pair in the resulting compound list. 

To satisfy swapping within the pair (.4, B), one may employ a predicate 
"swap" recursively described as 

swap([a,blY], [b, a lY]) :- !. 

swap( [X [Y], [Xl Z] ) :- swap(Y, Z) . (15) 

and, similarly, deleting a pair (A, B) is tested by a recursive predicate "delab", 

delab([a,b]X],X) :- [ .  

delab( [XIY], [XlZ]) :- delab(Y, Z) . (16) 

Since swapping and deleting appear concurrently, it is convenient to have a 
single predicate "abba" for testing both 

abba([a,b]X], [b, alX],X):- !. 

abba([X[Y], [XlYI], [X[Y2]):- abba(Y, YI,Y2). (17) 

Considering a predicate "normorder" as being satisfied when an initial compound 
list is converted into a final compound list with no (A, B) pairs, in order to collect 
the component lists one needs the usual concatenation recursive predicate "union" 
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union([] ,X,X) . 

union( [XiXl] ,Y, [X I Z] ) :- union (XI,Y, Z) . (18) 

and then may write 

normorder ( [ X[ Y] , Z) : - 

abba (X, Xl, X2) , 
I -t 

normorder ( [Xl], YI), 

normorder ( [X2] ,Y2), 

union (YI, Y2, XN), 

normorder (Y, YN), 

union (XN, YN, Z) . 

normorder (X, X) . (19) 

Note the use of the cut predicate, which prevents backtracking each time the 
"abba" predicate is satisfied and thus eliminates the need for the stopping rule in 
the second clause of the normorder predicate. Otherwise one would have to introduce 
a predicate "noab" which testifies to the total absence of (A, B) pairs 

noab([]) . 

noab([a,bl_]) :- !, fail. 

noab( [_IX] ) :- noab(X), (20) 

and also to modify the second "normorder" close to 

normorder (X, X) : - noah (X) . (21) 

The predicate "normorder" describes the relationship between an arbitrary 
initial compound list and its corresponding final, normally ordered compound list. 
Note that the resulting compound list generally contains many identical component 
lists which now should be grouped together, determining appropriate coefficients, 
which is done by application of the usual collecting procedures. 

In order to trace the intermediate processing results and introduce appropriate 
collection of identical elements at each subsequent level it is useful, especially 
when dealing with the initial configurations which display some degree of symmetry, 
to express the basic algorithm so that it generates a binary tree, e.g. 

normordertree (X,t (L,X,R)) "- 

swap (X, Xl), 

normordertree (Xl, L), 

delab (X, X2), 

normordertree (X2, R), 
!. 

normordertree (X, t (nil, X, nil) ) . (22) 
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The described predicates provide a direct programming implementation as a 
PROLOC query base. If, for reasons stated previously, one prefers to deal with an 
imperative language - like PASCAL -- capable of  an easy modification of  recursive 
procedures into iterative procedures, one has to appropriately reexpress (19) as a 
PAscAL function. 

When component lists and compound lists are implemented as PASCAL dynamic 
structures, their type may be defined as 

and 

list = ^link; 
link = record 

linfo : char; 
lref : list 

end; (23) 

llist = ^llink; 
llink = 6 record 

n u m :  integer; 
llinfo : list; 
lref : llist 

end; (24) 

respectively. Predicate (19) is then replaced by the following Pascal recursive function: 

function normorder (LI : llist) : llist; 

begin 

if noab(Ll) then normorder : = L1 

else 

if abtest (first (LI)) then 

normorder := normorder (fput (swap (first (LI)), 

fput (delab (first (LI)) ,bf (LI)) ) 

else 

normorder : = fput (first (LI), normorder (bf (LI)) ) 

end; (25) 

When the binary tree emulation is used, the appropriate PASCAL type may be defined 
a s  

tree = Anode; 
node = record 

tinfo : list; 
left, right : tree 

end; (26) 

and (22) may be replaced by a list-into-binary-tree PASCAL procedure: 
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procedure normordertree (L:list; var T : tree) ; 

begin 

new (T) ; 

T ̂  . list := L; 

if noab (L) then 

begin 

T^.left := nil; 

T ̂ .right : = nil 

end 

else 

begin 

normordertree (swap (L), T ̂  . left) ; 

normordertree (delab (L), T ̂  .right) 

end 

end; (27) 

The leaves of the resulting tree can then be interpreted as the processing output. 
Note that it is assumed that the usual list processing functions "first", "bf", "fput", 
etc., have been previously defined. 

The purpose of the developed software is twofold: on the one side it should 
enable fast and reliable processing of long and complex initial lists, and on the other 
it should facilitate algebraic and graph-theoretic analysis. 

4. Binary trees, networks and combinatorial aspects 

When list rearrangements are carried out by repetitive reference to the unit 
commutator - until the normal order is achieved - the intermediate steps comprise 
a corresponding binary tree in which the initial list is placed at the root. Each 
successive left branch produces swapping within the first encountered pair (A, B), 
while each successive right branch produces appropriate deletion of the pair. The 
intermediate results are placed in the appropriate nodes on different levels of  the 
tree. The final configuration - the resulting normally ordered list - coincides with 
the leaves of the tree. In ref. [ 1 ], we have presented a few examples which illustrate 
the rearrangements and display some graph-related aspects of the rearrangement 
process. 

In some cases, judicious collection procedures, sometimes involving different 
intermediate levels, may transform the tree into networks and manifest various 
numeric recurrence relations among the appropriate expansion coefficients. In this 
way, for instance, one can rederive expressions (7)-(11).  The associated graphs 
stem from the presence of equivalent nodes in the binary tree, which prompts for 
subsequent contractions and yields a corresponding transformation of the binary 
tree into a more general graph. This is often brought about by some partial ordering, 
implicit in the list-processing, which implies the existence of recurrence relations 
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interpreted as rules connecting respective nodes. In general, the appearance of 
recurrence relations can be traced back to the recursive features of  data structures 
and to the recursive nature of  processing algorithms. 

Algebraic considerations within the noncommutative ring which led to various 
recurrence relations, e.g. (7), (9), (11), (13), etc., first presented in ref. [5], possess 
graphical counterparts and, consequently, can be used to study the related graph- 
theoretical aspects. Reversely, the related graphs may yield constructive assistance 
in the detection of some yet unknown algebraic relations. With respect to the 
algorithmic features of  the noncommutative list processing, we observe that both 
algebraic and graph-theoretic considerations may beneficially influence the development 
of more efficient algorithms [4]. 

To be more specific, let us note that the normal ordering of an arbitrary ring 
element AmtB nl Arn2B n2 Arn3B n3. . . may be viewed from three different elementary 
levels: (a) jumping of  B over A, (b) jumping of  B over A ' ,  and (c) jumping of  B n 
over Am. Algebraically, these correspond to commutators (1), (3) and (14), respectively. 
Tracing the corresponding intermediate results then leads to binary trees, elementary 
networks and more complex graphical structures. 

As an illustration, consider the binary tree of  intermediate transitions for an 
initial list AraB n. Inspecting the repetitive features of  this binary tree, one easily 
observes that leftmost nodes represent progressive motion of  B generators from 
right to left, and that while each B travels from left to right, jumping over each 
successive A, the neighboring right nodes all contain the same content, namely, the 
list from which the (A, B) pair under consideration had been removed. Deletion of 
an (A, B) pair does not change the type of  the list structure, it only decrements by 
one the powers of  A and B, and consequently we are faced with a recursive situation 
which amounts to saying that the processing tree shrinks into a network with 
multiplicative side weights which, along the slash diagonals, progressing from left 
to right, amount to m, m - 1, m - 2 . . . . .  respectively [1]. 

If the position of  the network nodes is represented by two coordinates: 
n = 0, 1, 2, 3 . . . . .  for rows, and q = 0, 1, 2, 3 . . . . .  for slash diagonals, and the 
numeric content of  the nodes is expressed as a function M(m, n, q), the network 
implies the recurrence relation 

M ( m , n , q ) = ( m - q +  1 ) M ( m , n - l , q - 1 ) + M ( m , n - l , q )  (28) 

with the stopping rule 

M(m, n, q) = 0, for q < 0 and q > min(m, n); M(n, 0, 0) = 1. (29) 

The values of M(m, n, q) serve as expansion coefficients in the A"B '~ normal- 
ordering, i.e. 

min(m,n) 
A m B n =  Z M ( m ' n ' q ) B n - q A m - q "  (30) 

q=O 
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Recurrence relation (28) reflects the network multiplicative weight 
structure in which each node (n, q) receives information from two preceding nodes, 
(n - 1, q - 1) and (n - 1, q), with factors ( m -  q + 1) and 1, respectively. 

The AraB n normal-ordering network exhibits the property that all trajectories 
which lead from the root to any given node (n, q) carry equal contributions amounting 
to the product of  branch factors, namely, m(m - 1)(m - 2 ) . . .  (m - q + 1). Note that 
any trajectory, in order to connect the root with the (n, q) node, has to descend a 
total of  n steps, taking left or right branches at will, except for the overall condition 
that q right-branch selections have to be taken. This is equivalent to saying that the 
number of  trajectories equals the number of combinations C(n, q). These properties 
allow explicit determination of  the coefficients M(m,  n, q); namely, noting that the 
value of  M(m, n, q) equals the total contribution from all trajectories passing through 
the (n, q) node, we have 

M ( m ,  n, q) = m ( m  - 1)(m - 2 ) . . .  (m - q + 1)C(n, q) (31) 

or, equivalently 

M ( m , n , q ) = q ! ( q l ( q ) .  (32) 

Solution (31) can be verified by insertion into recurrence relation (28) and 
subsequent application of  elementary combinatorial identities: 

(ql 1 - q q - 1  ; q = q - 1  + q " ( 3 3 )  

The algebraic origin of  recurrence relation (28) can be established in the 
usual way by the method of total induction. To that end, one has to start with 
equality 

Arab n = (Arab n-  1)B, (34) 

make use of  (30), apply commutation relation (3), and equate coefficients with 
equal powers on both sides. 

Starting with the equality 

Arab n = A(A m-  l B n - 1 ) B  ' (35) 

however, one arrives at a different recurrence relation which connects each node 
with the three preceding nodes: 

M ( n , m , q )  = M ( n  - 1, m -  1, q) + (n + m -  2q + 1 ) M ( n -  1, m -  1, q -  1) 

+ ( n -  q + 1)(m - q + 1 ) M ( n -  1, m -  1, q - 2). (36) 
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Alternatively, writing AraB" as ( A r a B ) B " -  1 and using (3) yields 

AraB" = Am - 1B" - l(n + BA ), (37) 

where subsequent insertion of (30), into both sides of (37), leads to a new recurrence 
relation 

M ( m , n , q )  = (m  + n - q ) M ( m  - 1, n - 1, q - 1) + M(rn  - 1, n - 1, q ) ,  (38) 

which, unlike (28), keeps neither m nor n fixed. We observe that for the special case 
m = n, and the notation L(n ,  q)  = M ( n ,  n, n + q),  relation (38) turns into the recurrence 
relation (9) for Laguerre coefficients. 

Expansion (30) provides the basis for a more efficient version of the 
normal-order list-processing. Instead of looking for the first occurrence of a 
pair  ( A , B )  in a general e lement ,  say, A A A B B A B A B B A A B A B B A ,  i.e. 
A A ( A B ) B A B A B B A A B A B B A ,  it focuses on the beginning sequence A A A B B ,  views the 
e lements  as ( A A A B B ) A B A B B A A B A B B A ,  uses (30), and recursively repeats 
transformations of compound lists until the normal order is reached. 

As stated previously, the normally ordered expansion of arbitrary power of 
A + B is, from a quantum-mechanical point of view, potentially most interesting [3]. 
In order to prepare the compound list, which corresponds to the unordered expansion 
of (A + B)", to serve as the initial state for the PASCAL function "normorder" (25), 
we have added the following "apbton" function which recursively produces the 
initial binomial expansion: 

function apbton(n :integer) :llist; 

begin 

if n = 0 then apbton := fput (I, nil, nil) 

else 

apbton : = union(attach( 'A', apbton (n - I) ), 

attach ( 'B', apbton (n - i) ) ) 

end; (39) 

The auxiliary recursive function "attach" is self-explanatory: 

function attach (a : char;Ll : llist) : llist; 

begin 

if L1 = nil then attach := nil 

else 

attach := fput (a, attach (a, bf (LI)) 

end; (40) 

As printouts for small values of n indicate, the normally ordered binomial 
expansion can be expressed in terms of linear combinations of normal products of 
lower powers of A + B, which corroborates the general structure of (14). It also 
indicates the validity of the equality 
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[A + B]n(A + B) = [A + B]" + I + p[A + B]"- I, (41) 

in which [A + B] n designates the normal product, and (A + B)" the normally ordered 
product, and can be easily proved by binomial expansion and elementary combinatorial 
identities. In its turn (41), by the usual method of total induction, applied to (12), 
leads to recurrence relation (13) and the corresponding network which yields the 
explicit expression 

H(n, n - 2q) = [ n n 2 q  ) (2q -1)!!  (42) 

and the value zero for H(n, n - 2q + 1). 
To produce a combinatorially symmetric initial state S(n, q), i.e. the linear 

combination of C(n, q) ring elements such that each contains q generators of the 
type B, combinatorially distributed among generators of the type A, we need to 
introduce a PASCAL function "combab" [6]: 

function combab (m, n : integer) : llist; 

begin 

if (m<0) or (n<0) or (n<m) then combab := nil 

else 

if (m = 0) and (n = 0) then combab := fput (l,nil, nil) 

else 

combab := union (attach ( 'A', combab (m, n - i) ), 

attach('B',combab(m - l,n - I))) 

end; (43) 

Experimenting with various states produced by (43), as inputs into the 
"normorder" function (25), we obtain printouts with expressions indicating the 
following normally ordered expansion: 

Bq-kAn-q-k. 
S(n,q) = 2 k k ! ( q -  k)!(n + k - q)! 

k=0 

(44) 

To summarize, we reiterate that the noncommutative algebra software enables 
fast and reliable processing of long and complex lists, facilitates algebraic and 
graph-theoretic analysis of different algebraic situations and possibly aids in the 
detection of some yet unknown relations. 
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